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A method is given for studying the analytic properties of an arbitrary Feynman graph F, in which a full 
two-particle propagator G is inserted between one pair of points. Three special graphs are treated in detail: 
the two-particle amplitude itself, with two- and three-particle intermediate states, and the "triangle" 
graph. When G has a resonance, a possible approximation for F is to replace G by a complex pole, obtaining 
thereby a new graph / in which one internal particle has a complex mass. We show that, although the 
singularities of F and / a r e in general different, this approximation is appropriate for calculating "enhance­
ment" effects due to singularities of F, near the physical region, associated with the resonance. For the 
cases considered, we predict the ranges of the external variables for which such effects will occur, and show 
how to calculate them explicitly. 

1. INTRODUCTION 

THE conventional analysis of perturbation theory 
graphs deals with those graphs which have stable 

intermediate states—corresponding to the "elementary" 
fields of the Lagrangian—as internal lines. However, it 
may well be, especially in view of the wealth of experi­
mental examples, that one or more pairs of the ele­
mentary particles involved may interact to form reso­
nant states; these states contain, in a certain energy 
range, the most important features of the appropriate 
two-particle system. If we regard these two-particle 
resonances as approximately stable, we are naturally 
led to ask how we may extend the usual analysis to 
include resonances as internal lines. If we could do this, 
it would correspond to selecting out the physically most 
important parts of the sum of all those graphs (involv­
ing only stable intermediate states) which contain as sub­
graphs all possible graphs in the appropriate two-particle 
propagator, but which are otherwise identical to each 
other. 

This type of reduction of three-particle intermediate 
states has already been discussed from a rather different 
viewpoint by Mandelstam et al.,1 by Zwanziger,2 and 
Hwa.3 These authors use equations derived from uni-
tarity to analyze effects due to the coupling between 
elastic and inelastic channels when there is a resonance 
in one elastic channel. However, it is not evident how 
this work may be extended if the resonance occurs in a 
crossed channel. Our method is able to handle such cases, 
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and it also recovers the results obtained by the unitarity 
method. 

A third approach, related to both of these, has re­
cently been investigated by G. Bonnevay.4 It is based 
essentially on a model dispersion theory, the starting 
point being a Khuri-Treiman equation. Where they 
overlap, our results agree with those of Bonnevay. 

The problem is formulated in Sec. 2, and the method 
adopted for its solution, which is a straightforward 
extension of the usual analysis of perturbation theory 
graphs, is described in Sec. 3. Two simple examples are 
treated in Sec. 4, while in Sees. 5 and 6 we study the 
less trivial cases of the triangle graph as a function of 
each of two external invariants. In Sec. 7 the technique 
is recapitulated and we comment on the results. 

2. FORMULATION OF THE PROBLEM 

We now have to formulate more precisely the aim 
outlined in the Introduction. Let us illustrate our ap­
proach in a simple way by considering the well-known 
example of approximating, by a resonance pole, the 
two-particle scattering amplitude itself F(W2), where 
W2 is the cm. system energy of the particles. Figure 1 
represents the scattering of two particles A and B of 
unit mass (in what follows all particles are scalars and 
of unit mass, for convenience) via two-particle inter­
mediate states which include all interactions of the 
particles; we call the internal part of Fig. 1(a), shown 
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FIG. 1. (a) The two-particle scattering amplitude; (b) the two-
particle Green's function, G; (c) Fig. 1(a) with G replaced by a 
line of mass X; (d) the resonance approximation to Fig. 1(a), in 
which G in Fig. 1 (a) is replaced by a line of complex mass. 

4 G. Bonnevay, Nuovo Cimento (to be published). 
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in Fig. 1(b), the two particle Green's function G(W2). 
The part of F which contains G is related to G by various 
constants, and kinematical factors for the external lines, 
with which we shall not be concerned; hence its structure 
is given by that of G, which is assumed to satisfy a 
Lehmann spectral representation. Hence, for Fig. 1 (a) 
we have 

r00 er(X2) 
F(W2) = (l/w) d\2 , (2.1) 

Ao2 W2-\*+ie 
where o-(A2) is a spectral function associated with the 
intermediate states to which A and B are coupled, and 
the integral is along the real axis from the square of the 
mass Xo2 of the lowest two-particle intermediate state. 
At this stage, <r is real, non-negative, has a cut from 
Xo2 to oo 9 and its behavior at <*> is such that (2.1) con­
verges; some further properties of a will be given below. 

In general, of course, A and B may be coupled to a 
stable single-particle state also; one would then add to 
(2.1) a pole term at a mass M2 below X0

2. In some region 
of the physical range of W2, it might be that this pole 
term, 1/(W2—M2), would dominate the scattering; this 
is the basis of "pology." [This term is included in the 
form (2.1) by taking the integral from 0 to oo, over a 
spectral function which has a delta function singularity 
at \2=M2 and which is a beyond Xo2.] Suppose now that 
no such term is present, but that, rather, <r has a pair 
of complex conjugate poles, on all sheets, at X 2=I 2 and 
X2=J*2, where ImP is less than zero, and arg(/2—X0

2)« 0. 
That is, we assume that <r has the form 

cr(X2) = (X2-Xo2)V(X2)/(X2-/2)(X2-J*2), 

where r is a function regular in the right half-plane. The 
cut is only tied down to Xo2, and in our applications it 
will be deformed as necessary; it will not be mentioned 
further explicitly. In some simple theories,5 it is known 
that this corresponds to the situation in which A and B 
have a resonance at W=I, whose width is related to 
I m l . This resonance would then dominate the scattering 
in some region of W near Re/ . Recalling the form of the 
Breit-Wigner resonance formula, we might think that 
in a way analogous to the stable particle case, F may be 
approximated by a pole formula of the type 1/(W2—I2). 
In this case, however, as is well known, the pole is on 
the second W2 sheet® and thus F cannot be represented 
exactly by 1/(W2—I2). We shall see in Sec. 4 how this 
may be nevertheless a good approximation to F. Let us 
now, however, restate this result in a slightly more 
roundabout way which we shall then generalize. First, 
let us rewrite (2.1) as 

/.OO 

F(W2) = (1/TT) / d\2<j(\2)f(W21X2), 

5 M. Levy, Nuovo Cimento 13, 115 (1959). 
6 R. E. Peierls in Proceedings of 1954 Glasgow Conference 

(Pergamon Press, London, 1955), p. 296. 
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FIG. 2. (a) The two-particle scattering amplitude with three-
particle intermediate states, only one pair interacting through the 
two-particle Green's function G.; (b) Fig. 2(a) with G replaced 
by a line of mass X; (c) the resonance approximation to Fig. 2(a). 

where f(W*\\*) = (W*-\*+ti)rl. f(W2\\2) is just the 
Feynman graph for AB scattering, Fig. ( la) , with G 
replaced by a single line of mass X, as is shown in 
Fig. 1(c). The result may now be stated as follows: 
Replacing the internal G by the resonance mass / , as 
shown in Fig. 1(d), gives a singularity on the first sheet 
(in fact, on all sheets) of f(W2\P), but on the second 
sheet of F(W2). 

We now generalize this. Let f(x,y, - * • | X2) be a Feyn­
man graph in which all internal particles except one 
have unit mass, the remaining line having a mass X; 
let F(x,y, • • •) be the function obtained by replacing 
this X line, in f(x,y, • • • | X2), by the two-point function G. 
(The restriction to unit mass can, of course, be trivially 
relaxed; it is made for algebraic convenience only.) We 
shall often write simply F, a n d / or / ( | X2); (x,y9 - • •) are 
the external variables of the problem. F corresponds to 
a sum of all graphs which have the form of / , but in 
which, in place of the X line, all possible two-particle 
insertions are made. Then 

F(x,y,---) = (l/ir)[ d\2a(\2)f(x,y,"-\\2). (2.2) 

Our problem is: In what sense F is approximated by 
/ ( | J2), and, more generally, how are the properties of 
F related to those of / ( | / 2 ) ? We shall actually consider 
in detail only two examples. One is shown in Fig. 2(a), 
a three-particle part of F(W2) containing G within 
itself; in this case f(W2\\2) is the self-energy function 
of Fig. 2(b). The other example is Fig. 3(a): a triangle 
graph containing G internally. For this case, two 
variables enter, W2 and s} and f(s,W2 \ X2) is the triangle 
graph of Fig. 3(b). 

We have already seen one trivial example of how 
f(W2\P) may be singular on a given sheet while F(W2) 
is not. Very often, however, /(#,%-• • • | /2) may be a 
useful representation of F(x,y, • • •) in a certain energy 
range. To illustrate our findings, and to whet the 
reader's appetite, we close this section by giving a rough 
outline of our results. In what follows we shall take all 
the elementary particles involved to be scalars and of 
equal unit mass. 

Firstly, we point out that we shall clearly need the 
properties of f(x,y, * • • | X2) as, say a function of X2 as 
well as x. Hence we will have to analyze Feynman 
graphs with respect to an internal mass. f(x,y, • • • | X2) 
is a many-sheeted function, and so is F(x,y,-") as 
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(a) (b) (c) 

FIG. 3. (a) A rescattering, or triangle, graph containing G 
internally; (b) Fig. 3(a) with G replaced by a line of mass X; 
(c) the resonance approximation to Fig. 3(a). 

defined by (2.2). We postpone until the next section the 
detailed definition of the physical, first unphysical, etc. 
sheets, remarking here only that, roughly speaking, the 
physical sheet of F(x,y, • • •) is defined by integrating the 
physical sheet amplitude f(x,y, • • * | X2) along the un~ 
distorted X2 contour. Continuations to other sheets are 
then made by continuing f(x,y, • * • [ X2) and by distorting 
the X2 contour. Two cases arise, depending on the choice 
of external variables used to analyze F(x,y, • • •), and a 
convention can be conveniently introduced from the 
examples of Figs. 1-3. For Fig. 3(b), the definition of the 
s physical sheet of f(s,W2\\2) is independent of X2, for 
all real X2>X0

2; it only depends on X2 through the end 
point X0

2 (see Sec. 3.1). We say that the resonance is in 
a "crossed" channel, since it appears in a channel 
crossed with respect to s. If we chose to analyze Fig. (3a) 
in terms of W2, however, the W2 physical sheet of 
Fig. 3(b) would depend on X2; the resonance is then 
said to be in a "direct" channel. Figures 1(a) and 2(a) 
are both, of course, direct channel cases. 

For the crossed channel case we are able to give a 
complete treatment of the triangle graph, Fig. 3(a). We 
find, firstly, as already mentioned, that for certain W2, 
f(s,W2\I2), shown in Fig. 3(c), has a physical sheet 
singularity in s while F(s,W2) does not. Secondly, we 
find that for a certain range in W2>9, both f(s,W2\I2) 
and F(s,W2) have a logarithmic singularity on the 
second sheet below the s cut rather close to the physical 
region,7 leading to a peak in F(s,W2) near the s threshold. 
Finally, we show how to reach all the singularities of 
F(s,W2) for a general W2, on all s sheets, due to the 
resonance poles I2 and I*2. (It is convenient to introduce 
the general shorthand name "resonance singularity" for 
all such singularities.) Resonance singularities associated 
with J*2 are never near the physical region. 

In the direct channel case, we analyze the somewhat 
trivial Figs. 1(a) and 2(a) completely, obtaining the 
well-known results of, in the one case, a second sheet 
resonance pole in W2, at W2=I2, and in the other, a 
second sheet resonance square-root branch point in W2 

at W2=(I+1)2. For Fig. 3(a) as a function of W2, 
however, we are not able to give a complete discussion. 
The difficulty is primarily that the properties of 
f(s,W2\I2) are defined with respect to a complex branch 
point W2=(I+1)2. We investigate the physical and 

7 This result has been found by G. Bonnevay, Ref. 4. 

nearest unphysical regions of F(s,W2), but do not search 
further sheets; nor can we give a direct way of calcu­
lating effects in the physical region, although an in­
direct procedure does give a peak due to a resonance 
logarithmic singularity, the existence of which we are 
able to prove. 

3. GENERAL METHODS 

We wish to study the analytic structure of F(x,y, • • •), 
given by Eq. (2.2), as a function of one of.(x,y, * • •) when 
the remainder are held constant. We first indicate the 
definitions of the physical and various unphysical sheets 
of F(x,y,- —), and then describe two general methods 
useful in the analysis. 

3.1. The Physical and Unphysical Sheets of/and F 

Let us write F and / for F(x,y, • • •) and f(x,y, • • • | X2), 
respectively. We recall that / i s a standard perturbation 
theory graph containing an internal particle of mass X; 
it is a many-sheeted function. Suppose we are interested 
in the properties of F in the x plane. Then we first of all 
have to define a physical x sheet, for / , by drawing cuts 
from branch points due to the lowest contraction of / , 
then the next lowest, and so on successively up to the 
(leading) singularity of /itself. It is evident from (2.2) 
that this physical sheet is to be defined in the complex 
space of xy say, and X2. We are at once faced with a prob­
lem involving two complex variables. Two cases arise. 
In the first, which we call the crossed-channel case for 
reasons which will emerge later, singularities in x and 
in X2 from the lowest nontrivial contractions of /—self-
energy graphs—are independent of each other. Let 
these singularities be at Xi and X,-2, and draw cuts in the 
x and X2 planes from Xi and X,-2 so as to define inde­
pendent Riemann sheets in the X2 and x planes. Then 
/ is defined in the topological product of the two cut 
planes, and the sheets of / are with respect to these 
(independent) cuts in the x and X2 planes. Let us call the 
first sheet with respect to these cuts the physical sheet p, 
and denote by q the first unphysical sheet. In the x 
plane, p and q are defined with respect to a cut from the 
normal threshold x0, going along the real axis to + oo. 
The definition of the X2 sheets will be given in Sec. 4.1. 
Finally, let us denote by fpq, etc., the function / when 
x is in its physical sheet py and X2 is in its sheet q, etc.; 
as a convention, we always refer to the external variable 
x first in the subscript. 

Now as far as F is concerned, in this crossed-channel 
case, it certainly has the singularity x0 since that is 
independent of X2; we draw a cut from x0 to oo along 
the real axis. The physical amplitude F is then obtained 
from (2.2) by integrating, with x>x0 approaching the 
real axis from above, the physical amplitude fPp, along 
a X2 contour just below the real axis [cf. the +ie in 
(2.1)], from X0

2 to +<*>. The physical sheet P of F is 
then defined initially by continuation, in a counter-
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clockwise sense with respect to XQ, from this region near 
the real axis into the complex plane without completely 
encircling X=XQ. The X2 contour has to be deformed if 
necessary. This continuation will certainly be unique if 
there are no other singularities of the physical sheet 
amplitude—for example, anomalous thresholds—located 
off the real axis. For the crossed-channel case which we 
consider—the graph of Fig. 3(a) as a function of s—this 
is true, although /p2?C?,W/2|\2) does have a logarithmic 
singularity on the real s axis, on the lower edge of the 
s cut; this then leads, as we shall see, to a singularity of 
F(s,W2) on P just below the real axis at, say, s=sa-
Hence a complete definition of P must include a specifi­
cation of the cut attached to sa, and we shall take it to 
be simply along the real axis below the normal threshold 
cut. 

It is actually now already evident that fpp may be 
singular at some complex point, while F is nevertheless 
not singular on P. The condition is simply that in the 
continuation of x into P we never have to distort the 
X2 integration contour. We shall return to this below 
in Sec. 3.2. 

We have now defined F throughout the physical sheet 
P for the crossed-channel case. A second case arises, 
however, if the singularities in x and X2 from the lowest 
order contraction are not independent of each other; 
that is, \i—\i(x) and Xi = Xi(\2). Then it is no longer true 
that / may be regarded as an analytic function in the 
simple topological product of two cut planes. While our 
approach does not break down completely, our treat­
ment will be less complete. In this case, we have to 
analyze first of all how the singularity Xi survives the 
X2 integration. The details of this we postpone till 
Sec. 3.2, but the result is that it is only x0=x0(Xo2) 
which is a singularity of F. A cut along the real axis 
from XQ then serves to define P initially, provided there 
are no complex singularities. 

Suppose we now start from a point in the physical 
region (X>XQ and above the real axis), and continue in 
a clockwise sense with respect to x0 across the cut. The 
sheet reached on this path will be called Q and is the 
unphysical sheet nearest to the physical region. We 
shall now be integrating fqp, and in performing this 
continuation singularities may appear in / and move 
towards the X2 contour, forcing us to distort it, a process 
which will be halted when a singularity of F, pushing 
the contour in front of it, meets a singularity of <r. Then 
we will find a singularity of F in Q, so that Q will have to 
be defined by an additional cut starting from this and 
any other singularities we find in a similar way. Further 
sheets (RyS,- • •) can then be defined by various other 
paths of continuation. As for / , we denote by (FP,FQ, • • •) 
the function F on sheets (P,Q,- • •)• 

We now go on to describe in more detail a method, 
the rough outlines of which we have just given, for 
finding the singularities of P on the various sheets. We 
call it the search method. 

3.2. The Properties of F 

3.2a. The Search Method 

This is based on the now well-known method of 
Hadamard8-10 for obtaining the domain of holomorphy 
of a function defined by some integral representation. 
We follow an arbitrary path in the many-sheeted com­
plex x plane, and see how far we may enlarge the domain 
of holomorphy of F, by distorting, if necessary, the X2 

contour away from an advancing singularity of / . This 
enlargement proceeds unless (i) a X2 singularity of / 
coincides with X0

2, or with X2= <x>; or (ii) a pair of X2 

singularities of/are coincident and pinch the X2 contour; 
or (iii) a X2 singularity of /pinches the X2 contour against 
a singularity of a. That one of the three alternatives 
(i) to (iii) is the case is necessary, though not, in general, 
sufficient, for the existence of a singularity of F. 

The singularities of <r which are our immediate con­
cern are X2=J2, and X2=/*2. The <r branch point at 
X2=X0

2 has already been considered in (i). The singu­
larities arising by (i) and (ii) define the physical sheet 
of F, and those arising by (iii) are then to be determined 
with respect to this physical sheet. To determine the 
sheets on which the resonance singularities are found, 
we must follow the deformations of the X2 integration 
contour, in order to see that the coincident singularities 
actually pinch the X2 contour. To repeat, it is now clear 
that if throughout P no deformation of the X2 contour 
is necessary, Fp will have no complex singularities 
although fPP(x,y, • • • 1I2) may be singular. 

We shall normally use the search method, but there 
is another which we describe briefly. 

3,2b. The Dispersion Method 

This is based on dispersion theory. We express / as 
a dispersion integral in x with a spectral function <j> 
(*|X2), that is 

/ (* ,?, '" |X2 ) 

C dx; 

= (l/x)/ yKx'y-lW), (3.1) 

where C represents the integration contour. Then 

C dxf 

F(x,y-) = (1/T) 7Hx',y-), (3.2) 
ic(y...) x —x—ie 

where 

H*,y • • • ) = / d\2a(\2)<t>(x,y • • • | X2). (3.3) 

Singularities of $ in x give rise to singularities of F on Q. 

8 R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952) was 
the first to apply the method of J. Hadamard [Acta Math. 22, 55 
(1898)] to this type of problem. 

9 J. Tarski, J. Math. Phys. 1, 149 (1960). 
10 L. F. Cook and J. Tarski, J. Math. Phys. 3, 1 (1962). 
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We arbitrarily distort the X2 contour in (3.3), in such a 
way that we explicitly separate off the contribution of 
the pole of a at X2 = /2, 

$(x,y'' *) = &-2viR<l>(x,y • • • | P), (3.4) 

where R is the residue of a at the pole X2=J2. By this 
separation it seems that $ contains <j>(%9y-\I2) and 
thus the singularities of <$>(x,y -\P). These singularities 
may give rise to singularities of F on Q. However, we 
must ensure that the singularities of <t> are not cancelled 
by those of 4>. 

This method has certain difficulties of execution, 
though not of principle, and in general we prefer the 
search method. To proceed with it we have to know the 
properties of f(x,y, • • • | X2) as a function of X2. 

3.3. Properties of/ 

Before dealing with F we must know the singularities 
of f(x,y, • • • | X2) in X2 for all complex X2 and x, say, the 
other variables (y, • • •) being real and physical. This 
requires the study of the analytic properties of perturba­
tion theory graphs as a function of two complex 
variables, one being an internal mass and the other an 
external variable. This has only once before been studied, 
in a rather different context.11 We apply here two 
methods more usually used for the analysis of two ex­
ternal variables, namely perturbation theory and dis­
persion methods. 

The perturbation theory analysis is a fairly obvious 
generalization of the methods developed by Eden,8 

Tarski,9 and Cook and Tarski,10 though several unusual 
features arise. We write the standard integral over 
Feynman parameters «»-, and find the various (x,\2) 
surfaces on which end point or coincident singularities 
of the cii integrations occur. The singularity character 
of such a surface can only change at contact with the 
"one further contraction" surface, and theorems (3.2) 
and (3.3) of Ref. 10 can easily be generalized for vari­
ables (x,\2). A slightly unusual feature is that the lowest 
order singularity surfaces are given by a&=l, <Xi—09 

all iy^k. One must also take account of the possible 
second type singularities.12 The treatment of a leading 
singularity curve in (x,X2) is straightforward provided 
the physical sheet defined by the lower order singu­
larities does not contain any complex singular surfaces 
which depend on both x and X2. This is the basis of the 
distinction between crossed and direct variables, and 
we do not pursue the treatment of direct variables as 
vigorously as that of the (simpler) crossed variables. 

The analysis of f(x\\2) can also be performed by 
dispersion methods, if / satisfies a dispersion relation in 
x with a spectral function <j> whose properties are known 

11 J. Bronzan and C. Kacser, Phys. Rev. 132, 2703 (1963). 
12 D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. Polking-

horne, J. Math. Phys. 3, 594 (1962); Phys. Letters 3, 55 (1962); 
also see, M. Fowler, J. Math. Phys. 3, 936 (1962); Nuovo Cimento 
27, 952 (1963). 

as a function of x for at least some range of X2. One can 
then obtain the properties of f(x\\2) by continuing <j> in 
X2. Whenever a singularity in x of <j> crosses the x dis­
persion integration contour, this leads to a new singu­
larity of / . Continuation in x onto other sheets is done 
by deforming the x integration path as necessary, so 
that x singularities of <t> become second-sheet singu­
larities of / . For the triangle there is no lack of dispersion 
relations13; however this method of analysis requires 
care in keeping account of sheets. The same problems 
of lower order singularities arise here as for the perturba­
tion theory method, when these lower singularities de­
pend on both variables. Thus we prefer the method of 
perturbation theory. (The two methods should always 
lead to the same results.) 

For actual calculations, however, once the singu­
larities have been determined, we shall use dispersion 
theory; we now give an outline of this. 

3.4. Calculation of F 

The case in which a resonance singularity is most 
interesting is when FQ has a singularity just below the 
real axis, since then it is near the physical region in P; 
it is for this case that we shall calculate F. The method 
can certainly be generalized. 

Suppose FQ has a resonance singularity at xr, say, 
due to a pinch between the pole of a and a singularity 
of /«/?, where a, & stand for the x, X2 sheets of / . Then 

FQ=FQ-2iR(P)fa(x,y,- • • \P), (3.5) 

where R(P) is, as before, the residue of the pole in a at 
X2=/2, and where F has a definition similar to that of 
FQ except that the X2 contour passes below X2=/2. The 
X2 index on / has been dropped for clarity since it will 
be p in our calculations. Then FQ has no singularity 
at xi, since the X2 contour is not pinched; the singularity 
of FQ at xi is in fa(x,y,-- -\P). In Q, we draw a cut 
from xi to + oo; let us denote by square brackets dis­
continuities across this cut. We then have the immediate 
result that, apart from constant factors, 

M=[/«(|/2)]. (3.6) 
To evaluate [/«(|/2)] we can use either perturbation or 
dispersion methods and we will use the latter. [We notice 
how this section is closely related to Sec. 3.2(b).] 

In summary, we see that once we have proved that F 
has a singularity on Q at xh the effect of this can be 
calculated from the separated-off resonance contribution 
fa(\P). The nontrivial part is to show that this con­
tribution is not cancelled by the remaining "back­
ground" term P. 

4. TWO SIMPLE EXAMPLES 

In order to claiify our methods, we now turn to some 
straightforward examples. 

13 C. Fronsdal and R. E. Norton, UCLA preprint, 1963 
(unpublished). 
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4.1. The Two-Particle Amplitude with Two-
Particle Intermediate States 

As we have seen, the two-particle amplitude of Eq. 
(2.1)—Fig. 1(a)—can be identified with the form (2.2) 
by setting 

f(W2\\2) = l/(W2-\2+ie). (4.1) 

f(W21X2) is shown in Fig. 1(b). For a we take only two-
particle contributions, assuming, in particular, the 
existence of resonance poles I2 snd J*2 as discussed in 
Sec. 2. As a function of the two complex variables W2 

and X2, / has a pole in each variable located at the value 
of the other variable (the ie can be ignored). In this 
simple case / is not many sheeted. The physical sheet 
P of F is denned originally as the sheet for which the 
X2 integration runs on the real axis from 4 to <*>; thus 
on this sheet F(W2) has a continuum of poles, that is a 
cut, from W2=4 to <*> y and the physical limit is obtained 
by approaching the real axis in the sense W2-\rie, i.e., 
from above. As we continue onto the second sheet Q 
of F through this cut from above, the X2 pole of / at 
X2=p^2 w[\i c r o s s the X2 integration path from above, 
unless we deform the contour downwards to avoid it. 
As W2 approaches I2, the deformed X2 contour is pinched 
between the pole of / at X2=W2, and the pole of a at 
X2=J2 , so that W2=I2 is a singularity of F(W2) on its 
second sheet [note that W2=I2 is a singularity for 
"all sheets" of f(W2\I2)~\. This singularity is actually a 
pole, as can be seen if we follow the deformation of the 
X2 contour by two distinct W2 paths to the same Wo2, 
which pass W2=I2 clockwise and anticlockwise. One 
easily sees that the value of the X2 integration is the 
same for both paths. Of course an easier way is to write 
the X2 deformed contour as the original contour together 
with a closed loop about X2= W2

} as in Sec. 3.4, Eq. (3.5); 
we obtain 

FQ(W2) = FP(W2) - 2iR(I2)f(W2112), 

where we recall that Fp and FQ are the values of F on 
its first (physical) and second sheets, P and Q, respec­
tively. One can go on to find the W2=I*2 second-sheet 
singularity (a pole); and also to show that going through 
the second-sheet cut from above returns us to the first 
sheet, so that W2=4 is a square-root branch point, which 
is a consequence of the two-sheeted nature of o-(X2). 

F(W2) is a two-sheeted function, while f(W2\\2) is 
single valued. f(W2112) has a pole which corresponds to 
that second-sheet pole of F(W2) which is near the phys­
ical edge of the physical sheet of F. Further, the behavior 
of F(W2) along this edge is properly reproduced by that 
of f(W2\I2), both in magnitude and phase (disregarding 
a smooth background variation). On the other hand, 
f(W211*2) does not reproduce the physical value of 
F(W2) correctly (it gives the opposite phase); this is 
because the pole of f(W2 | J*2) leads to a second-sheet 
pole of F(W2) which is far from the physical region, so 
that the physical values of F(W2) are incorrectly repre­

sented by f(W2\I*2), even to modulo a background 
term. 

This trivial example, therefore, already demonstrates 
the necessity for caution in applying the resonance 
approximation, and shows that the important question 
is the location of the singularities of F(W2), not pri­
marily those of / ( ^ 2 | / 2 ) and f(W2\I*2). 

4.2. The Two-Particle Amplitude with Three-
Particle Intermediate States 

To discuss resonance approximations to the three-
particle intermediate state part of the two-particle 
amplitude, we analyze Figs. 2(a) and 2(b). In this case 
f(W21X2) is the single-loop self-energy function, whose 
properties are well known for fixed real values of the 
internal masses (X and 1 in our case). In particular, the 
explicit form of / is easily evaluated; the extension to 
complex X2 can be done either from the explicit form 
or by means of the dispersion relation satisfied by 
f(W2\\2). 

Nonetheless, in order to demonstrate our general 
methods, we have treated / i n full detail by the methods 
of perturbation theory. This analysis, which is given 
in Appendix A, will have a later application, since the 
self-energy function is a lower order (contraction) 
singularity of the triangle graph. 

4.2a. Properties of Fig. 2(a) by the Search Method 

We now turn to the properties of Fig. 2(a), given by 

F{W2) = ( 1 / T ) f d\2a(\2)fpp(W
21X2), (4.2) 

where fPP(W2\\2) is Fig. 2(b); the indices will often be 
suppressed. 

The properties of / that we use are proved in the 
Appendix. For a given real X2>4, f(W2\\2) has a W2 

cut running along the real axis between the two inverse 
square-root branch points at W2=(\+l)2 (this is a 
direct channel case) and W2= GO , and the physical limit 
is from above this cut (W2=0 is not a physical sheet 
singularity). F(W2) is denned in (4.2) with a real X2 path 
of integration. F has, firstly, a logarithmic singularity 
at W2=9, where the singularity of / at PF2=(X+1)2 

coincides with the end point X2=4. The physical sheet 
P of F is defined by a cut along the real W2 axis running 
from 9 to infinity. This is the normal branch cut corre­
sponding to the three-particle intermediate state. Com­
mencing with any W2 infinitesimally above this cut, 
W2 can range throughout the whole complex plane 
avoiding the cut—that is, staying on P—and no singu­
larity of f{W2\\2) will ever meet the X2 integration 
contour, since the singularities are at X2=0, X2= — <*>, 
and \2=(W— l )2 . Hence (a usual feature) the entire 
physical sheet definition of F is in terms of an undis-
torted X2 contour. 
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We now continue from the physical region of the W2 

physical sheet P onto the first unphysical sheet Q, and 
ask for the singularities of FQ. For this continuation, we 
still integrate / , but the contour may have to be de­
formed since / now develops complex singularities [see 
the remarks following Eq. (A4)]. Exactly as in (4.1), 
we find that W2= ( I+ l ) 2 is a singularity of FQ, due to a 
pinch of the X2 contour between the X2 singularity of 
f(W21X2) at X2= (W-1)2 and the pole of a at X2=I2. It 
is, in fact, a square-root branch point.2 As W2 continues 
clockwise on Q other possible singularity candidates are 
for W2= 1, at which the previously singular X2= (W+1)2 

passes through the X2=0 cut, and the second type singu­
larity at FP=0. Both of these are reasonably far from 
the physical region, and we do not pursue them further. 
If W2 continues around on Q between W2= 1 and W2—9, 
one finally encounters the singularity PF2=(/*+l)2 . A 
singularity at (7*+l)2 can also be found on a search 
which starts on P below the real axis with TF2>9, and 
moves anticlockwise with respect to W2=9, crossing 
the cut. Now, however, since W2—9 is a logarithmic, 
not a square-root branch point, we reach a third sheet 
R, not Q, and the value of FR is not that of FQ. Again, 
one can reach (/+1)2 on R. Other sheets can be defined 
similarly, but the singularities on them, and of FQ at 
(7*+l)2, are far from the physical region, and we shall 
be mainly concerned with the singularity of FQ at 
(7+1)2. We remark that all these resonance singu­
larities correspond to first sheet singularities of f(W2\ I2) 
and/(PF2|I*2). 

We now investigate the resonance singularities in Q 
more closely, show that they are branch points, and 
calculate the discontinuity associated with each. We 
let W2 search to some W2 on sheet Q, to the right of 
W2=(I+l)2, along two paths which pass W2=(I+1)2 

in a clockwise and in an anticlockwise sense, obtaining 
FQ(W2+) and FQ(W2-). The appropriate X2 contours 
are shown in Figs. 4(a) and 4(b). One readily finds 

FQ(W2+)-FQ(W2~) 
= -2wiR(P)£f(W2\P~)--f(W2\P+)2 (4.3) 
= -2mR(P)Zf(W2+ \P)-f(W2~ | J 2 ) ] , 

where R(P) is the residue of <r(X2) at X2=/2, and 
f(W2± |P) are the values of f(W2\P) obtained for W2 

passing clockwise and anticlockwise around the branch 

(w-ir 

(a) (b) 

point of f(W2\P) at W2=(I+l)\ The form of (4.3) 
is again a special case of Eq. (2.7). 

We can obtain the discontinuity of f(W2 \ P) by con­
tinuation in X2 from real to complex values; or directly 
using perturbation theory methods14'15 (for we know 
that the discontinuity of / is due to one of the a% poles 
crossing the ai integration path); or by dispersion theo­
retic methods. We adopt the last (they all give the same 
result) since we can at the same time demonstrate the 
dispersive method of studying F. 

4.2b. Properties of F(W2) by the Dispersive Method, 
and Calculation of the Resonance Peak 

We have, as before, 

F(W2) = (1 /T) f d\2<r(\2)f(W21X2), (4.4) 

but now use the dispersion relation valid for real X2>0 

1 r dWf2 

f(W2\\2)=~ / <t>(W,2\\2), (4.5) 
TJa+i)>W'2-W2-ie 

with 

$(W21X2) = IW2- (X- l ) 2 ] i /2[^ 2 - (X+ l)2]i/2/2PF2. 

Then 

with 

(4.6) 

F{W*)--

*(PF2) 

dWt2 

$(W'2), (4.7) 
9 Wf2-W2-ie 

d\2<r(\2)<t>(W2\\2). (4.8) 

Singularities of # for complex W2 give singularities of F 
on its second sheet. Equation (4.8) originally applied 
for W2>% with the X2 contour along the real axis. We 
continue in W2, and obtain a singularity of $ if (i) the 
end point X2= (W— l)2 encounters a X2 singularity of <t> 
or of a, or (ii) two singularities of <f>, or of a, or one of <r 
and one of <f> pinch the X2 contour (which may have been 
pushed by one of these). Notice that possible singu­
larities arising from coincidences (ii) require a careful 
tracking of the deformations of the X2 contour to test for 
pinching. Hence, in general problems this method is less 
straightforward than the search method for finding 
singularities, though as we shall see below, it is very 
powerful for calculating observable effects. For the self-
energy graph, the enumeration of possible singularities 
is straightforward. One finds (considering only P) that 
the end point meeting the pole of o* gives (W— 1)2=P 
as a singularity, and the coincidence of $ and a singu­
larities gives the possibility of W2=(I— l)2. The latter 
is actually a singularity if W2 first circles W2= (7+1)2, 

FIG. 4. The X2 contour and cut (dashed) for F(W2). (a) W2 circling 
clockwise about ( J + l ) 2 ; (b) W2 circling (J-+-1)2 anticlockwise. 

14 R. J. Eden, in Brandeis Lectures in Theoretical Physics, 1961 
Lectures (W. A. Benjamin, Inc., New York, 1962), Vol. 1. 

15 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 
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but not on a direct path. FP=0 is also a singularity of 
both <t> and of $, being the second type singularity. 

We now distort the W2 path in (3.12), avoiding the 
singularities of <£ as shown in Fig. 5. The spectral func­
tion along G is the straightforward continuation of # 
to complex W2 for (W— l)2 passing below X2=/2; and 
the X2 integration along C2 is equivalent to a X2 integra­
tion from (/+1)2 to oo, with a weight function 

$(W2+)- $(W2-) - - 2TiR(I2)<j>(W2112). (4.9) 

But 

1 r dw'2 

- / — 4>{W'*\P) = f{W+*\P). (4.10) 
TrJ(i+i)*W'2-W2-ie 

Therefore, for W2 in the lower half-plane, 

F Q ( J P ) = (1 /T) f {dW'2$(W'2)/(W'2-W2--ie)} 
Cl -2wiR(P)f(W+2\P), (4.11) 

where FQ is the second-sheet continuation of F, the 
resonance contribution being explicitly separated off 
p t is clear that the Ci integration has no singularity at 
W2= ( J+l ) 2 ] . This is another example of the separation 
of the resonance contribution, as described in Sec. 3.4. 
If we now evaluate (4.11) for W2>9, W2 having an 
infinitesimal negative imaginary part, then the C\ con­
tribution will have a threshold behavior coming from 
TF2=9, but no other "peaking;" however, f(W2\I2) will 
show some enhancement arising from the singularity 
at W*'=(!+l)*. But FQ(W2-ie) = FP(W2+ie); hence 
we see that the physical amplitude in the physical limit 
will show an enhancement due to the second-sheet 
singularity at TF2=(/+1)2, which can be calculated 
simply from the resonance contribution of (4.11), which 
itself can be calculated from (4.5) and (4.6). Of course 
we cannot calculate the magnitude of the smoothly 
varying background term arising from the C\ integra­
tion, but we do know that it does not cancel the reso­
nance singularity. This enhancement is a woolly cusp 
effect of the type discussed by Nauenberg and Pais.16 

5. THE TRIANGLE GRAPH WITH A RESONANCE 
IN THE CROSSED CHANNEL 

Having outlined the general approach, and having 
used it in two simple examples, we now apply it to a 
rather less trivial case: the analysis of the triangle graph 
F(s,W2), Fig. 3(a), as a function of s. This is our first 
crossed channel case. As before, we write 

F(s,W2)= f d\2*(\2)f(s,W2\\2), (5.1) 

where / is Fig. 3(b). We wish to find the connection 

" M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962). 

9 

v > •, 
V. c2 

c, 
FIG. 5. The distorted W2 dispersion integral path for F(W2). 

The part Ci gives P, with no singularity close to the physical 
sheet, while C2 leads to an explicit separation of f(W2\P). 

between F and f(\P), Fig. 3(c). We begin with the 
definitions of the physical, and first unphysical, sheets 
of F; that is, P and Q, respectively. 

5.1. The Definition of Sheets P and Q 

We first have to define the sheets of / , which in this 
case is rather more complicated, since / is a function of 
two complex variables, s and X2. For a given W2, we 
need the complete analytic structure of / in X2 as well 
as s. This is derived in Appendix B. For the purposes 
of the present discussion, we first recall the notation for 
the sheets of / introduced in Sec. 3. The physical sheet 
of / i s defined initially with respect to the various singu­
larities coming from the contracted graphs, which in 
this case are self-energy graphs of the type of Fig. 2(b); 
these have been analyzed already in Appendix A. In the 
s plane, the physical sheet p is defined with respect to 
the normal threshold cut starting at s=4; the first 
unphysical sheet q is reached by crossing this cut from 
above. In the X2 plane, two cuts define the physical 
sheet p; they are drawn along the real axis from 
\2=(W-1)2 to - 0 0 , and from X2=0 to -00 (these 
overlap, of course). If we cross the cut between X2=0 and 
X2= (W-l)2 we pass to sheet q in X2, the X2= (W-l)2 

branch point being a square root singularity. The singu­
larity at X2=0 is logarithmic, and in general we will not 
continue through the negative real X2 axis. Then fpq, 
for example, denotes / when s and X2 are on sheet p 
and q, respectively. These lowest order singularities in 
s and X2 are independent of each other, so that this is 
a crossed channel case: X2 is in a crossed channel with 
respect to s. Hence / is defined in the product of the 
cut s and X2 planes. 

We can now define the sheets of F. Since F certainly 
has those singularities of / which are independent of 
X2, we see that F has a square root (normal threshold) 
branch point at s=4. The resulting two Riemann sheets 
join across a cut in the s plane, which we take to be 
along the real axis from s=4 to s= + oo. The physical 
amplitude F is obtained from Eq. (5.1) by integrating, 
with s approaching the real axis from above, the physical 
sheet amplitude fpp along a contour taken just below the 
real X2 axis [cf. Eq. (2.1)]. In this case, we note that 
the definition of the X2 contour gives the necessary pre­
scription for passing the branch point of fpp at 
X2=(JT-1)2, which, for all $ and W2>9, lies on the 
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real X2 axis to the right of A2=4. The physical sheet P 
is reached by continuation from the physical region 
above the real ^ axis into the complex s plane, in a 
counter-clockwise sense with respect to .s=4. 

An important remark follows from the properties of 
fpp derived in Appendix B. Since fpp is totally free of 
singularities for lm?>0, ImX2<0, it follows that as s 
moves in the upper half-plane, there is no X2 singularity 
which can approach the X2 integration contour; i.e., for 
lmy>0, the X2 contour is not distorted. This remains 
true for s£m_, and s£z>_ [cf. Eq. (B5a)]. Finally as s 
enters U- from ZL_ by crossing H-, X_2 does become singu­
lar; however, it enters p through L. 0<X2<4, thus 
avoiding the X2 contour. We therefore see that this 
continuation may proceed throughout the whole s. plane 
without our having to distort the X2 contour, so that we 
may write, with an undistorted contour, 

/.OO 

FP= ^XV(X2)/^(|X2). (5.2) 

To anticipate somewhat, we point out that this is not 
true for continuation into Q, the sheet reached by a 
clockwise continuation with respect to s=4; then we 
must write 

FQ=£ dh*v(\>)fgp(\\*), (5.3) 

the circle sign on the integral indicating that a distortion 
of the X2 integral has been necessary. 

Sheets P and Q will also have to be further defined 
with respect to additional branch points of F arising 
from pinch or end point singularities of the X2 integra­
tion. The initial definitions of P and Q are shown in 
Fig. 6. 

5.2. Properties of F and Sheets P and Q 

In addition to the X2-independent singularity at 5=4, 
FP or FQ are singular, firstly, when one of the triangle 
singularities of fpP(s,W2\X2)f denoted by X+

2, X_2, 
reaches the end points X2=4, X2= oo, of the X2 integra­
tion. The motion and singular character of X+2, X_2 are 
described in Appendix B. We refer to Fig. 19 in particu­
lar, which defines certain regions, in the s and X2 planes, 
which we shall use frequently. From Eq. (B5) and 
Fig. 18 we see that as s approaches %(W2— 1) through 
values greater than this, below the real axis (that is, 
as s tends to the upper left corner of U-) a singularity 
X_2 of fPP(W2,s\\2) reaches the end point X2=4. Hence 
s= i(W2— 1) is a singularity for FP, reached from below 
the real axis (and is far from the physical region). In 
the same way, we find that s= %(W2— 1) is a singularity 

FIG. 6. The initial definition of the © 
^ physical (P) and nearest unphysical \ P X Q 
(Q) sheet, for F in the crossed channel •-—-J )—*~ 
case. 4 /Q / P 

4 0 4 

. • __—». -« • • » 
-|-(W2-I) -g-(W-l) 

(a) (b) 

FIG. 7. (a) The physical (P) sheet cuts of F(s,W2); (b) some of the 
cuts of F(s,W2) on the nearest unphysical sheet Q. 

for FQ, reached from above the real axis. The fact that 
for X2=4 the singularities of fpp coincide is essentially 
irrelevant. The existence of these singularities at 
s~\{W2—\) may also be inferred from a conventional 
analysis of fPp(W2,s\4) in terms of W2 and s (although 
this case is admittedly somewhat degenerate), or by 
explicitly making continuations of FP(FQ) along two 
paths passing on either side of K^2""!)? starting from 
below (above) the real axis and ending aboye (below) it. 
These continuations lead to different results, demon­
strating the existence of a singularity of FP and FQ 
a t | (PP- - l ) . 

Finally, we remark that s—Q is not a singularity of 
Fp. At first sight we might suspect that it was, since if 
we make a circle about it inside w in the s plane, one of 
the X2 points, X_2, crosses the X2 cuts near X2= — oo y and 
hence its singularity character might change. This does 
not occur on this sheet, since this "possible" singularity 
cannot cause a deformation of the X2 contour in Eq. 
(5.1). Since fPP(s,W2\X2) is certainly regular at s=0 for 
all X2 on the undistorted X2 contour, it follows that s=0 
cannot be a singularity of Fp. [Of course, s=0 also 
arises by contraction of the X2 side of the triangle, as 
both the Landau pseudothreshold (mi—m^f, and also 
as the second type singularity. But these are not singu­
lar on the physical s sheet.] 

In fact, one finds that s—0 and ^= — 00̂  the two 
singularities associated with X2= <*>, appear only in FQ, 
Since any remaining singularities of FPox FQ come from 
a pinch of the X2 contour at X2=72 or J*2, where I is 
complex, we have found all the branch points of Fp and 
FQ on the real axis. Our choice of cuts for Fp and FQ 
at this stage is shown in Fig. 7. Crossing a cut on two 
successive revolutions about ^=4 returns us to the same 
sheet as that on which we started only if we cross in the 
region 4 < ^ < K ^ 2 ~ 1 ) . 

Consider now, for Fp, the possibility of a pinch at 
X2=J2 or 7*2. On its physical sheet, fpp may have com­
plex singularities for s in U-, if I2 is in w- [Eq. (5)]|. 
But, as we remarked earlier, no deformation of the X2 

contour in Eq. (5.1) is necessary to reach these points, 
nor is it necessary throughout P, so that no pinch can 
occur. That is,Fp has no complex resonance singularities, 
despite the fact th&tfpp(W

2,s\I2) may have. The differ­
ence between the properties of F and those of f(\I2) is 
made clearly evident. 

The situation is different for FQ, however. Let us 
introduce the notation Q(uJ) to denote the domain u-
on sheet Q, etc. . . . We shall illustrate the procedure 
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FIG. 8. A search for resonance singularities in the s variable of the triangle graph F(s,W2) (the crossed channel case). The search 
path in the 5 plane is shown by the heavy line joining ringed points on the path. The inset diagrams show the X2 plane at each ringed 
point. In these, the singularities in X2 of the triangle graph F(s,W21X2) are shown by the plus and minus signs; the X2 contour is the heavy 
line. Only the essential parts of the bounding curves S±, H± have been included. The cuts in the s plane are indicated by thick dashed 
lines. A detailed commentary on this figure is given in the text. 

by one rather straightforward search, which we describe 
in detail. It is drawn in Fig. 8, and we shall devote the 
rest of this section to explaining, and commenting on, 
this diagram. 

The over-all plane is the s plane for F, divided into 
the six regions u±, v±, w± as defined in Appendix B. 
This plane has two cuts along the real axis from 4 to 00 f 

and from §(W2—1) to 00. [It also has two "naming" 
cuts (see Appendix B) between 0 and 4, and between 
(W-1)2 and (W+l)2.~] Starting at the point 1 in P(w+), 
we cross the first cut, passing into Q(wJ), and proceed 
to search for singularities along the route 2, 3, 4, 5. 
This route crosses no other cuts (at a naming cut, the 
name of the singularities of /, not their singular charac­
ter, changes). Consideration of the sheets reached by 
crossing the cut attached to %(W2— 1) will be deferred 
to Sec. 5.3. This route in the s plane is shown by the 
line joining the points 1-5; the part of that line in P(w+) 
is shown dotted, to emphasize that between points 1 
and 2 we move from P to Q, so that it is on a different 
sheet of F from the remainder. 

The insert diagrams, on the other hand, show the X2 

plane. The regions u±, etc., are indicated, as needed, by 
light solid lines. The positions of the two singularities 
of / , X+

2 and X_2, are indicated by + and — signs; their 
singular character, and motion, is determined in Ap­
pendix B. In this plane, there are, we repeat, cuts along 
the real X2 axis from (W— l)2 to — 00, and from 0 to 
— 00 7 which for clarity are not shown in the Fig. 8. 

Finally, the X2 contour, which runs initially from 4 to 
+ 00, just below the real axis, is shown as a heavy solid 
line. 

We start at the point 1, in P(w+), so that Eq. (5.1) 
holds. Neither X+2 nor X_2 is singular for fpp, and the 
X2 contour is undistorted. As we pass to 2, we move 
continuously onto Q, and onto the q sheet in s. We see 
that X+2 has crossed a X2 cut, so that it now appears on 
fqp [see Eq. (B6)], forcing a deformation of the contour 
down into w_. This is the crucial point of the whole analy­
sis. At 3, we cross a naming cut, and the names X+2, X_2 

interchange; the properties of FQ, however, remain the 
same. At 4, the distorted X2 contour now enters w_, 
having passed through i>_, while at 5 it enters ze/+. At 5, 
the distortion has forced a part of the contour through 
the X2 cut between 4 and 0, so that for that part we 
would be integrating fqq. (cf. the remark at the end of 
Appendix B.) That part is shown dotted. 

The possibilities for resonance singularities are now 
quite evident; we require the deformed X2 contour to 
collide with a pole of a. We shall state the results. Most 
notably, we see that there is a complex singularity in 
Q(wJ) if I2 is in U-? This is near the physical region in 
P(w+) if the imaginary part of I is sufficiently small. 
We shall show how to calculate the effect of this singu­
larity in Sec. 5.4, below. It is found on any path entering 
Q from P in the upper half-plane. Note that s=W+l 
is not a branch point of FP. It may appear, at first sight, 
that it is, since if we penetrate Q(vJ) by going from 
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FIG. 9. (a) and (b). The location of the sheets 
R and S of F(s,W2). 

P(w+) via P(v+), for instance, no X+
2 singularity appears 

in fqp to force a X2 contour deformation, so that there 
is no singularity in Q(vJ). However, if we then move into 
Q(wJ), the singularity does appear; essentially, this is 
because as we circle s=W+l once, the X+

2 point circles 
the X2= (W-l)2 cut twice. s=$(W2—i) is not a branch 
point either, when approached from above the real axis, 
since, although the singular character of X_2 does change, 
it causes no deformation of the contour. These com­
ments reflect our earlier findings about the singularities 
of F on P, and the content of these is that, in general, 
any point in Q can be reached from P on an arbitrary 
path crossing the cut. Hence any most convenient search 
into Q is adequate for any given region. 

The remaining results for sheet Q will be summarized 
below, in Sec. 5.3, where we investigate higher sheets 
ofF. 

5.3. Further Sheets of F> and Some 
Singularities on Them 

Although s=%(W2— 1) is not a singularity of FP when 
reached from above the real axis, it is when reached from 
below, as we saw in Sec. 5.2. It is also a singularity of 
FQ from above. Referring to Fig. 9, denote by R the 
sheet reached by continuing across the real axis into 
u+ from P(uJ); and by 5 that reached by continuing in 
the opposite sense into U- from Q(u+). Both of these 
sheets are rather far from the physical region of P. 
Nevertheless there is some point in investigating them. 
Firstly, the analysis is easily handled by the search 
method, and is an example of a distinctly nontrivial 
case. Secondly, singularities associated with J*2 are 
frequent on these sheets. Thirdly, we recall that for the 
two-particle amplitude with three-particle intermediate 
states (Sec. 4.2), the resonance singularities were found 
by penetrating the cut attached to the branch point 
associated with X2=4; we might expect, therefore, as 
has been conjectured by Challifour,17 that continuations 
through the cut attached to the branch point 
s=i(W2— 1), associated with X2=4, would also find 
resonance singularities. We find that this is the case. 

We have summarized our principal findings diagram-
matically in Figs. 10(a)-(c). Fig. 10(a) shows on the left, 
a possible position for I and /*, with, on the right, the 
consequent singularities associated with each, with the 

17 J. Challifour, private communication to P, V, Landshof 
quoted in Nuovo Cimento 28, 123 (1963), 

sheet specified. Figures 10(b) and 10(c) complete the 
possibilities for positions of I and J*. Further sheets, 
and the singularities in them, can be searched in the 
same way. 

The most significant singularity, physically, is that in 
Q(w-) when / is in u— We now turn to the question of 
how effects due to it may be calculated. 

S.4. Calculation of Effects due to a 
Resonance Singularity in 5 

Following the general method of Sec. 3.4, we make 
manipulations similar to those leading to the separation 
given by Eq. (4.11), so that we are left with the problem 
of calculating f(s,W2\I2), this giving the dominant 
contribution to FQ in the region of interest. 

This problem has been treated in some detail by one 
of us,18 and will not be dwelt on here.19 / is calculated 
from a dispersion relation in s, the spectral function 
[ / ( J , P T 2 | / 2 ) ] , in the notation of Eq. (3.5), being the 
continuation in X2 of the usual one. The example con­
sidered in Ref. 18, is, in fact, an unequal mass problem: 
The reaction is 7r+iV—>TT+W+N, and the diagram 
calculated is shown in Fig. 11. The intermediate state is 

® 
(a) e-

I 2 on Q 

I*2on S 

© 
r ' on 0 

I* on S 

FIG. 10. Summary of results for the crossed channel case of the 
triangle F(s,W2). In each of the three cases (a), (b), (c), the left-
hand figure shows a possidle location of the <r poles at \2—P and 
X2=/*2 in the X2 plane, while the right-hand figure shows in which 
sectors of the s plane the related triangle singularities will occur, 
and on what sheet. 

1 8 1 . J. R. Aitchison, Phys. Rev. 133, B1257 (1964), following 
paper; but see also J. Bronzan, M.I.T. preprint (unpublished). 

19 This graph has also been calculated by S. F. Tuan and T. T. 
Wu (private communication). Somewhat similar types of graph 
have been calculated approximately by F. R. Halpern and H. L. 
Watson (to. be published). 
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x.~»r FIG. 11. The process 
/ j calculated in Ref. 18; the 

/ ' dashed lines are pions, solid 
\. / I lines nucleons, and the 

W z _ . \ / I double line is the (3,3) 
J' \ isobar. 

a pion and the (3,3) nucleon isobar. It turns out that 
the calculation is sensitive to the actual isobar width, in 
that the resonance singularity, whenever it is in Q(wJ), 
is very near the threshold s=4. Hence, it is somewhat 
suppressed. For a very sharp resonance, the calculation 
shows that the effect produced would be a pronounced 
peak in \F\2 near s=4: that is, at the low mass end of 
the pion-pion spectrum. Naturally, the singularity is in 
the critical region Q(wJ) only for a certain range of W; 
as W is increased, it passes out of Q(wJ) into Q(w+), 
passing to the left of s=4, and the effect disappears. It 
is unfortunate that, when it occurs, it is so near s=4 
that detection of it may prove hard. 

We now proceed to our last example, the triangle 
graph in the direct channel. Here we shall find a similar 
effect, and it may be physically more interesting. 

6. THE TRIANGLE GRAPH WITH A RESONANCE 
IN THE DIRECT CHANNEL 

We once again consider the properties of 

1 r 
F(s,W2)=- d\2a(\2)f(s,W2\\2), (6.1) 

IT J ± 

but now as a function of the complex variable W2, for 
fixed real s>4. The properties of /0,PF2|\2) in the two 
complex variables (W2,\2) have to be determined on the 
sheets defined by the lower order contractions singu­
larities. One of these, in particular, is the singularity 
surface W2= (X+l)2 as found in Sec. 4.2, or Appendix A; 
that is, (W2 is a direct variable) the contraction physical 
sheet is not a simple topological product of two cut 
planes. Hence, our normal procedure, based on what 
would, in this case, be a \2—W2 analysis of f(s,W2\\2) 
for fixed s, is much more involved. Therefore we only 
attempt to find the nearest singularities of F instead, 
and do not give a general method for studying all sheets. 
We do find a second-sheet resonance (triangle) singu­
larity for F, not to be confused with the resonance 
(contraction threshold) singularity at (/+1)2. As usual 
the effect of this can be expressed in terms of f(s,W2112). 
While f(s,W2112) can presumably be evaluated in terms 
of a dispersion integral along a complex W2 contour 
starting at W2= (/+1)2, a more straightforward, though 
somewhat circular method, is to use the dispersion rela­
tion in s to calculate / for a range of "fixed" physical 
W2, and hence the resonance enhancement effect on 
F(syW

2), as a function W2. F will have two resonance 
peaks, one arising from the complex normal threshold 
(7+1)2 (woolly cusp), and another from the resonance 

triangle singularity, both being calculable simply from 
/ . A numerical evaluation of f(s,W2\I2) has been 
performed,18 and as a function of W2 the two resonance 
peaks are distinct, for a sufficiently narrow resonance. 

We now describe the method to be used. First, we 
must define the W2 physical sheet. For any real X2>4, 
it is known (see, for example, Ref. 11), that there are 
no complex singularities of / for any s or W2 on the 
physical sheet, there being only an s cut from 4 to °o} 

and a W2 cut from (X+l)2 to °o. Using this information 
in (6.1), with an undistorted X2 contour, we see that 
F(s,W2) has as physical sheet the topological product 
of a 4 < s < oo cut and a 9<W2< <*> cut (as in Sec. 4.2), 
there being no complex W2 singularities on the physical 
W2 sheet. 

Thus we must look to the second and higher W2 

sheets of F(s,W2) for resonance singularities. We only 
search the nearest such sheet, reached by continuing 
W2 clockwise from above and through its cut, on which 
from Sec. 4.2, we already know that we will find the 
singularity W2=(I+1)2. 

We look for effects of the I2 pole, ignoring those from 
J*2 since we know that the contraction singularity 
W2=(I*+l)2is fairly far from the physical region; the 
triangle singularities arising from I*2 will be further 
away. We hence investigate the candidates W±2(s,I2) 
on the physical and nearest unphysical sheet, using the 
search method [here W±

2(s,I2) are the two W2 roots of 
T(s,W2,I2) = Oj That is, we follow a W2 path to one of 
W±2, and observe how the X2 singularities of / force us 
to distort the X2 contour. The motion of these points, 
^±2(s,W2), can be derived from the W2, X2 section of the 
surface P. However, to avoid facing the problem of the 
definition of the (FP,X2) physical sheet with respect to 
W2 = (X+l)2, we determine the singularity character of 
\±

2(s,W2) by first of all taking W2 to be real, and using 
the (s,\2) analysis of Appendix B with s real >4; we 
then preserve the character of each of X±

2 as singular or 
nonsingular when we continue to complex W2. 

The (W2,\2) real section of T is shown in Fig. 12, 
drawn for 4<s<16. The dashed curve in the same 
figure is 

A=[PF2-(X-1)2][TF2-(X+1)2]=0, (6.2) 

being the contraction singularity surface, singular for 
flP=(X+l)2. The points in Fig. 12 are labeled by the 
same letters as in Fig. 18, for corresponding points, there 
being two points at infinity on the upper branch of the 
hyperbola T, called a\ and a2, corresponding to the one 
point a of Fig. 18. (Fig. 12 is discussed in more detail 
in Ref. 11; recall the s *=± X2 symmetry of T). A point on 
the arc be of Fig. 18 corresponds to one on the same-
named arc of Fig. 12, etc., with ab=aib, ae=a^e. 

In the C?,X2) treatment, Appendix B, for real W2, the 
physical s limit was s+ie. For e nonzero, X±

2 then also 
has imaginary parts whose sign can be real off Fig. 18 
(which gives d\2/ds). Further, we know from Appendix B 
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FIG. 12. The real (W2
}\

2) section of rO?,JF2,X2), for real s > 4 ; 
also that of A^[W2- (X+1)2][PF2- (X-1)2] = 0 (broken curve). 
The various points shown are at: b, W = 2 s + l ; c, \ 2 = W + 1 
= ^ 2 + 2 ; e, W2=(s-l)2, X 2 = ( s - 2 ) 2 = ( P F - l ) 2 ; C , \2=-W+l 
= -^ 2 +2 . 

whether each of X±
2 is singular or nonsingular on the 

physical X2 sheet with this imaginary part. However, 
what we will really want to know is the singularity 
character of each of X+2 and X_2 when reached on the 
two paths in the X2 plane, on the physical sheet starting 
to the right of the branch point \2=(W— l)2, which 
circle to the X2 under consideration in a clockwise and 
in an anticlockwise sense with respect to this branch 
point. Recall that the location of the cut is arbitrary, 
and the language of paths is more appropriate for a 
function on a Riemann surface than that of cuts. We 
call these path senses clockwise and anticlockwise. 

Since each of X±
2 is singular on one but not the other 

of the two sheets of f(s,W2\\2) with respect to 
\2— (W— I)2, we can easily determine the answer. When 
we turn to (W2,\2) and Fig. 12 we commence with 
s real >4, and W2 on its physical side of its cut from 9 
to <*>, i.e., W2+ie. We again find a definite sign of the 
imaginary part of X+2 and X_2, but this sign will not 
always be the same as that given by the (s,\2) method. 
However, the X2 cut will be displaced slightly into the 
upper half-plane due to the displacement of its end 
point X2= (W— l)2, and in fact the singularity character 
on the clockwise and anticlockwise paths must neces­
sarily be the same as found by (s,X2). (Both s+ie and 
W2+ie give the same physical limit of the physical 
sheet.) We therefore get the starting characters as 
shown in Table I. We see that the sense in which X2 is 
singular changes at e, the contact of T with the lower 
order singular contraction A. 

Let us consider an s which is only slightly larger than 
4, specifically (s— 2)2<<CRe72. We commence with W2+ie 

TABLE I. The starting point of the direct channel analysis: 
The singularity characters are transferred from the crossed 
channel case. 

(s,X2) Singular on 
ImX2 p sheet 

Singular in 
which sense 

(W2,\2) 
ImX2 

a\b 
be 
ce 
e#2 

+ 
+ 

no 
yes 
no 
no 

anticlockwise 
anticlockwise 
anticlockwise 
clockwise 

+ 
+ + 

on its physical sheet with W2^>(s—1)2 and the two X2 

singularities of f(s,W2\\2) on the branches a^(X_2) and 
ea2(X+2). The X2 contour is then as shown in Fig. 13(a); 
here each of (W— l)2, X_2 and X+

2 has a small positive 
imaginary part, the X2 integration goes along the real 
axis, and in order to display the clockwise sense of 
X±

2, we have slightly deformed the X2 cut upwards. 
Let W2 move on a fairly direct path into the lower 

half-plane through the W2 cut, towards W2=(I+1)2. 
We then obtain the situation shown in Fig. 13(b). All 
three of X_2, X+2 and (W— l)2 have moved into the 
lower half of the X2 plane, to the right of X2=4; however, 
they have not changed their relative locations. Both 
X+

2 and (W— l)2 are singular, and cause the X2 contour 
to be moved downwards. At W2=(I+1)2 we see that 
the X2 contour is pinched between the pole of a at \2=I2 

and the contraction singularity \2=(W— l)2 so that 
W2= (7+1)2 is a singularity of F on Q. This is nothing 
more than the singularity of the three-particle inter­
mediate state two-particle amplitude discussed in 
Sec. 4.2. 

Now consider, instead, a W2 path which goes towards 
W-J(s,I2), passing in a clockwise sense around 
W2(I+l)\ Here WJ(s,P) is that W2 root of 
T(s,W2,P) = 0 for which X+

2(PF_2) = /2; and similarly 
W+2(s,I2) is defined by X_2(TF+

2) = I2. (Note that for 
I2 real >4, X+2>X_2, W+2>W-2, all being real.) We 

(a) — r""«-~ -»(w-ir -«—-r̂* T z 
+̂ s. 

X_ N.S. X + S. 

-*» (b) 

(w-ir 
Xi N.S. 

(c) 

X_ N.S.' 

FIG. 13. The X2 contour and cut (dashed) of F(s,W2)} for various 
W2) (a) W2 real, on physical edge of physical sheet P; (b) 
^ 2 = ( / + l ) 2 o n Q ; (c) W2 = WJ(I2) on Q, for W2 passing clockwise 
about (7+1)2; (d) as in (c), but W2 passing (7+1)2 anticlockwise. 
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then get the situation shown in Fig. 13(c). The X2 

contour is between P and X_2, and at this point 
f(SjW21X2) is being seen in a clockwise sense with respect 
to (W— l)2, so that X_2 is singular. Hence, on a clockwise 
W2 path to WJ, WJ is a singularity of FQ(s,W2). 

On the other hand, if the IF2 path to WJ had passed 
around W2= (7+1)2 in an anticlockwise sense, we would 
have found the situation of Fig. 13(d). Now theX2~I2 

part of the X2 contour is seen in an anticlockwise sense 
with respect to \2=(W— l)2; for this sense X_2 is not 
singular, so that the "pinching" shown in Fig. 13(d) is 
only apparent. In an anticlockwise sense WJ is not a 
singularity of FQ(s,W2). [We should point out that we 
are free to move the X2 cut as we wish, since only the 
sense of a point is significant. Thus between Fig. 13(c) 
and Fig. 13(d) X_2 has crossed the cut; however, it has 
never crossed the contour when in a singular sense. In 
general, for a given sense any \±

2 point may cross the 
X2 contour if it is nonsingular but must push the contour 
ahead of itself if it is singular.] 

We use precisely similar methods to show that 
W+2(s,I2) is a singularity of FQ(s,W2) if reached in an 
anticlockwise sense about W2(I+1)2, but is nonsingular 
in a clockwise sense. In summary, 

WJ(s,I2) singular in clockwise sense, 
not anticlockwise. 

(6.3) 
W+2(s,I2) singular in anticlockwise sense, 

not clockwise. 

It will be seen that the different conclusions for WJ 
and W+2 arise because \+2Qea2 is singular in a clockwise 
sense, but X_2£a, b is singular in an anticlockwise sense 
(cf. Table I). It may well be asked what happens if we 
leave P for Q at a W2<(s— l)2, so that \+2Gce, and is 
now nonsingular in a clockwise sense. Apparently 
W2 = (s— l)2 is a first-sheet singularity of F in the physi­
cal region. A little thought shows that this is not the 
case. W2=(s— l)2 is a special point of the mapping, 
and near it we find 

[X_2- (W-1)2] oc - [W2- (s-1)2]2; 

as W2 circles the point W2= (s— l)2 once, X_2 makes two 
complete revolutions with respect to the \2=(W— l)2 

branch point. This is true regardless of the size of the 
W2 closed path enclosing (s— l)2. It then can be shown 
that we reach the same conclusions, Eq. (6.3), regardless 
of where we start with W2. In fact, we can start with 
any W2>9, independently of s, with W2 real and the 
two Xj,2 being complex conjugate on the surface BCbc. 
Our initial restriction that (s—2)2<<CRe/2 is also irrele­
vant to the final conclusions. It was made to ensure that 
in Fig. 13(a-d), no violent gyrations of relative positions 
would occur. It is straightforward to follow the X2 

contour and singularities for many different W2 paths; 
however, the various domains in the W2 plane do not 
have any particularly direct physical significance. 

s -><o 

(I+l)' 

s=4 ^ \ v £ 

$-»co 

FIG. 14. The motion of W±
2(s,P) in the complex W2 plane, for 

^ moving along the real axis from 4 to w. The cut starting at 
W2=(I+1)2 is also shown. 

There are many other sheets which could be investi­
gated, and among other singularity candidates are 
PF2= (X0—1)2= 1 (the nonsingular pseudonormal thresh­
old), and the second type singularities W2=(s1,2+1)2 

and W2=(sll2~ l)2. The latter are not singular on the 
physical edge of P. Thus all other candidates are further 
away from P than those we have found in Eq. (6.3). 

We show the location of W±2(s,I2) for all s>£ in 
Fig. 14. The curve is one branch of a hyperbola. The 
important features are that W+

2=WJ=2I2+1 for 
s=4; as ^ increases, W+2 moves down and to the right, 
while WJ circles to the left of (7+1)2, and ultimately 
crosses the real W2 axis. These properties can be ob­
tained directly from the form T(s}W±

2J2) = 0, or, more 
neatly, by rewriting T=0 in terms of the familiar ex­
ternal variables20 x, y, and z defined by W2= l+I2—2Ix, 
s=2(l-y), \I=z. r = 0 then becomes x2+y2+z2 

— 2xyz—l = 0, and the mapping of the real y axis in 
T is a degenerate quartic21 made up of an ellipse and 
a hyperbola. The real s axis with s>4 maps into one 
branch of the hyperbola. 

The properties Eq. (6.3) apply for all real ,?>4. The 
reason for our initial restriction (s— 2)2<3CRe/2 was to 
ensure that WJ had not yet circled W2=(I+1)2, for 
at this moment the X±

2 also starts gyrations relative to 
\2=(W— l)2, which would have led to unnecessary 
confusion. 

The result Eq. (6.3), as regards W+2, implies that 
WJ2 is only singular if W2 moves on Q along a path 
which avoids the W2=(I+1)2 cut shown in Fig. 14. 
Thus, the singularity W+2 is always rather far from the 
physical region. WJ is not singular on a clockwise 
path with respect to W2=(I+1)2. For small ^>4 anti­
clockwise clearly means on a path which avoids the 
W2= (1+1)2 cut, and as s increases this definition cannot 
change, even though the word anticlockwise is hardly 
appropriate by the time W-2 has entered the upper half-
plane. Similarly "clockwise" means on a W2 path which 
leaves Q through the upper edge of the (/+1)2 cut, to 

20 R. Karplus, C. M. Sommerfield, and E. D. Wichmann, Phys. 
Rev. I l l , 1187 (1958). 

21 G. Bonnevay, I. J. R. Aitchison, and J. S. Dowker, Nuovo 
Cimento, 21, 1001 (1961). 
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another sheet R. On this sheet WJ is singular. It is 
also singular on the sheet R' reached by leaving Q 
through the lower edge of the W2=(I+1)2 cut, as can 
be verified by following such a W2 path for small s. It is 
customarily asserted that W2=(I+1)2 is a square-root 
branch point. We have not been able to prove this by 
our methods, but have found no contradiction; that is, 
R'^R is very plausible. 

In terms of these sheets, our final conclusions for 
F(s,W2) are: 

(i) w2= ( I+l ) 2 , singular on Q; 

(ii) W2= W+2(sJ2), singular on Q, not on R; (6.4) 

(hi) W2= W-2(s,I2), singular on R} R', not on Q; 

when ImPF_2>0, Q becomes P, not singular. 

We now ask if any of these are likely to have ob­
servable effects.22 The threshold W2=(I+1)2 will, of 
course, lead to a woolly cusp effect, exactly as for the 
scattering amplitude of Sec. 4.2. W+2 is always far away 
from the physical sheet, so will never have an effect. 
However, for sufficiently small s>4, WJ- can have an 
effect, since then the path from the upper edge of the 
(I+l)2 threshold cut into R will be fairly short. This is 
especially the case if | ImI21 <<CRe/2, for then Fig. 12 
becomes contracted in the vertical scale. Thus, for a 
sufficiently narrow resonance, and for sufficiently small 
(fixed) s>4, F(s,W2) should show two separate reso­
nance "peaks," one associated with W2=(I+l)2 and 
the other with the resonance triangle singularity 
WJ(s,I2). 

As usual, these enhancements can be calculated by 
explicitly separating out the resonance contribution, i.e., 

F{s,W2) = F(s,W2) - 2iR(I2)f(s,W2112). (6.5) 

We do not discuss the question of evaluating discon­
tinuities in detail. From Eq. (6.5) it is clear that the 
essential properties of FQ are given by f(s,W2112). If we 
write a dispersion relation in W2 for Fp(s,W2), with 
contour the real W2 axis from 9 to oo, this contour can 
be swung down into the lower half W2 plane, revealing 
the beginning of the sheet Q. Then, as shown in Fig. 15, 
if we swing down sufficiently far and around, we can 
write two separate contour integrals. It seems clear that 
the integration along Ci will give F, while that around 
C% will give the separate contribution from the resonance 
f(s,W2\P). Since W2 is a direct variable, C2 encloses 
two singularities, the contraction threshold and also the 
triangle singularity PF+2. The sum of these contributions 
will give f(s,W2\P). However, since ultimately we will 
want to take both s and W2 real and physical, there is a 
much easier way of evaluating / , namely by use of an 

22 j n w j j a t s e e m s to be the first consideration of resonances as 
internal lines, a triangle with a resonance in the direct channel 
(in this case the 5 channel) was calculated approximately by R. 
Aaron, Phys. Rev. Letters 10, 32 (1963). However, there the 
interest was rather different. 

© 
9 

wi. w | 

FIG. 15. The distorted W2 dispersion integral path for F(s,W2). 
The part Ci gives ftt with no resonance singularities near the physi­
cal edge of P; while C2 leads to the explicit separation of the reso­
nance contribution f(s,W2\P). 

s dispersion relation, for which there is only one branch 
point. This is exactly the same calculation as discussed 
in Sec. 5.4. When f(s,W2\P) is evaluated numerically,18 

one does actually find that for a sufficiently narrow 
resonance, / shows two resolved "peaks" in W2 for fixed 
s very close to threshold s=4; of the two peaks one is 
due to the woolly cusp singularity W2=(I+1)2; the 
other is due to the triangle resonance singularity at 
WJ*(s,P). The significance of this result is discussed 
further in Ref. 18. 

7. SUMMARY AND CONCLUSIONS 

We now review the techniques we have used and 
comment on the results we have obtained. The basic 
problem considered was the meaning and application of a 
perturbation theory graph when it contains an internal 
particle of complex mass. We stated with an arbitrary 
graph F in which the full two-particle Green's function 
(or propagator) G was inserted between two points (the 
resulting graph being then, in fact, a sum of many 
Feynman graphs). 

We wrote F (ci. Sec. 2) as an integral of the product 
of the spectral function a of G and the Feynman graph 
/(IX2) obtained from F by replacing G with a single line 
of mass X, the integral being over X2. We considered the 
case in which G had a resonance, corresponding to poles 
of <r at X2=J2 and I*2. Then F could be written, quite 
generally, as the sum of / ( | / 2 ) and another "back­
ground" term coming from the continuum part of G, 
not the pole. 

Within this framework we attempted to answer three 
questions. First, what are the analytic properties of F, 
given such a resonance structure in G? Second, under 
what conditions are these properties sufficiently similar 
to those of /(J J2) that the latter is a good approximation 
to F? Third, what observable effects are expected from 
singularities associated specifically with the resonance, 
and how may they be calculated? 

To answer the first question, the singularities of the 
X2 integral representation for F had to be analyzed and 
this necessitated a prior analysis of the perturbation 
theory graph / ( | X2) as a function of the internal mass X2. 
Three examples were considered in detail. By way of 
introduction, the first, a trivial one, was the two-particle 
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scattering amplitude with two-particle intermediate 
states as a function of the energy variable W2. Apart 
from inessential factors, this amplitude is just G itself 
and /(|X2) is l/(W2—\2). We rederived the well-known 
result that the poles in a reappear as second-sheet poles 
of G. Of these, the one at W2~I2 may be near the physi­
cal region, and if so, it leads to an enhancement effect 
in G. Our techniques show why /(112) is a suitable ap­
proximation to G for calculating this enhancement, 
while, on the other hand, / ( | / * 2 ) , a priori an equally 
plausible candidate, is not. 

A less trivial example was that of the two-particle 
amplitude with three-particle intermediate states, 
F(W2), one pair of the particles interacting via G. Here 
/ ( | X2) was the single-loop self-energy function, and was 
analyzed in detail in Appendix A. The analysis of F(W2) 
was done in Sec. 4, and the singularities of F associated 
with the resonance in G were found. Of physical signifi­
cance was a square-root branch point on an unphysical 
sheet near the physical region, closely analogous to the 
resonance pole of the first example. We showed that the 
effect of this branch point in F could be calculated 
correctly by evaluating / ( | / 2 ) . 

Our main example was the triangle graph F(s,W2), as 
a function of each of two external invariants s and W2. 
/(|X2) for this case was discussed in Appendix B, and 
the properties of F were given in Sees. 5 and 6. Two 
singularities of F appeared to be of special physical 
significance. First, as a function of s, F could have a 
logarithmic branch point on an unphysical sheet near 
the physical region, for a certain range of W2. Second, F 
could have an analogous branch point in W2 for a 
certain range of s. In the first case, we showed that 
effects due to this branch point could again be calcu­
lated by evaluating f(\P), and the prescription for 
doing this was given. However, we were not able to 
carry through the analogous calculation in the second 
case, and we had to resort instead to the first prescrip­
tion, evaluated for a given fixed s and many values of 
W2, thereby calculating F(s,W2) along the real W2 axis. 
These calculations, reported elsewhere,18 indicate that 
if the width of the resonance is small, effects due to 
these "resonance singularities" may be observable. 

From these three examples we draw the following con­
clusions. In a certain range of the energy variable W2, 
the two-particle scattering amplitudes may be well 
approximated by any simple form which represents a 
pole in W2, near the physical region. Correspondingly, 
more complicated graphs F containing the two-particle 
propagator G internally may be approximated, in certain 
energy ranges, by simply replacing G with a complex 
pole, that is, by a graph f(\I2) which has an internal 
particle of complex mass. Although, in general, the 
singularities of f(\I2) and F are quite different, for 
these energy ranges two necessary requirements hold: 
firstly, only certain singularities of F associated with 
the I2 pole in G ("resonance singularities") need be 

considered, and secondly, these singularities of F are 
contained in / . In that case, the "background" part of 
F—which we are unable to calculate—does not cancel 
these singularities, so that we are justified in calculating 
their effect from / ( | / 2 ) . We conjecture that whenever a 
calculation of f(\I2) shows an effect in the physical 
region due to a resonance singularity, it is a legitimate 
approximation to F, but not otherwise; this is, after all, 
quite satisfactory. In the examples considered, / ( | / * 2 ) 
is never a good approximation. 
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APPENDIX A: PROPERTIES OF f(W2\X2) 

Following standard methods23 one has 

/ (^2 |X2 ) 

where 

= f daA 
Jo Jo 

da2S(a1+<X2— 1) InA, (Al) 

A=an+a2X2—ai<X2W2—ie=aZay (A2) 

Z being the 2X2 matrix 

_ T 1 §(l+X2-TF2)- j 

~~lm+\2-W2) X2 J 
(A3) 

Since X2 is one of the variables, we have not performed 
the usual transformation on the on which makes zu= 1 
(c.f. Ref. 20). We now enumerate the possible singu­
larity surfaces. 

(i) a i = 0 , a 2 = l end point. This gives A = 0 if X2=0 
so that there is a singularity surface X2=0; but see (iv). 

(ii) a i = l,o;2=0 end point. Similarly this gives X2= <*>. 
(iii) «i coincident singularities. This gives the 

parabola 

2 s de tZ= [W2- (X+ l)2J_W2- (X-1) 2 ] 
= [ X 2 - ( P F + 1 ) 2 ] [ X 2 - ( ^ ~ 1 ) 2 ] = 0 . (A4) 

FIG. 16. The real (TF2,X2) section of the various singularity sur­
faces of the single-loop self-energy function }(W2\\2). The heavy 
lines are singular on the physical sheet. 

23 R. J. Eden, Maryland Physics Department Report No. 211, 
1961 (unpublished), especially p. II , 4 rT. We are ignoring a sub­
traction term needed for convergence since it is independent of W2. 
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(c) 

FIG. 17. The location of the Feynman denominator a singularities a± of f(W2\\2) for real X2 for the three cases 
(a) W2<0; (b) 0<W*<1; and (c) KW\ 

For real W2 and X2, we see that a i / a 2 = — §(1+X2— W2), 
which implies 0<ai,a2<l for W2=(l+\)2, i.e., 
X2= (W-1)2 with W2> 1; but a2 outside 0 to 1 otherwise. 

(iv) Another possible singularity is IF2==oo? which 
actually comes under both types (i) and (ii), but is easy 
to overlook. For W2—> <*>, X2 finite, one has a±^\2/W2 

or ai^l+l/W2. Thus, as W2 does a circle about the 
point at infinity, the two a\ singularities circle syn­
chronously about the two a\ end points 0 and 1. 

(v) Finally we must include the possible second type 
singularity12 W2=0. We show the real sections of these 
surfaces in Fig. 16. By inspection of Eq. (A4), A never 
vanishes on the undistorted a* region of integration if 
X2>0 and W2<0; nor if ImX2<0, ImW2>0, this being 
the definition of the physical limit. Hence, end point 
contraction cuts should be taken along the whole of the 
negative real X2 axis (we postpone discussion of W%= <*>). 
Turning to the coincident singularities, the complete 
real section of 2 can be reached from the physical limit 
(with undistorted ai paths), and thus we see that only 
the branch CD is singular (since for it the pinch occurs 
between 0 and 1). The W2 branch cut runs from 
W2= (X+l) 2 to W2 = oo ; the possible second type singu­
larity W2=0 is, therefore, not singular on the physical 
sheet. A remark important for the analysis of Sec. 4.2 
is that the complex extension of 2 is singular only from 
CD. We see that following A BCD the singularity charac­
ter changes only at C, at contact with a singular lower 
order curve, but not at B, exactly as in more standard 
analyses. 

An unusual feature is that X2=0 is always a singu­
larity, as well as X2= (W-l)2 for W2> 1. This can be 
seen in more detail if we solve for the c^. We eliminate a^ 
then 

A=W2a1
2+a1(l-\

2-W2)+\2-ie 
= W2(a\—«+)(«!—a_) , 

with a±=[_(\2+W2-l)±^2/2s. We show o± versus 
real X2 in Fig. 17(a) for W2<0, Fig. 17(b) for 0<W2<1, 
and Fig. 17(c) for 1<W2 (most easily obtained by solv­

ing A = 0 for X2 in terms of «i) . From Fig. 17 we see that 
for W2<1 there is one (and only one) ax singularity on 
the undistorted a\ contour for X2<0, and none for X2>0; 
while for W2> 1 there is one ai singularity for X2<0, but 
two for 0<\2<(W— l )2 , these being coincident at 
\2=(W— l)2. Hence X2=0 is always a physical sheet 
branch point, as is X2= (W— l )2 for W2> 1. By explicitly 
performing the a± integration one easily sees that the 
latter is two sheeted; however, the former is actually a 
logarithmic singularity, with 

W2-

f o r T f V l , X2~0. 

APPENDIX B: PROPERTIES OF THE TRIANGLE 
GRAPH, /(s,W^|^2), FOR COMPLEX 

s AND 3t2 

We now turn to the properties of the triangle graph 
[Fig. 3(b)] in perturbation theory. This has been 
studied by Bronzan and one of the present authors 
(C. K.)11 in terms of s and X2, for fixed real W2>9. We 
briefly summarize their findings. 

The physical sheet for f(s,W2\\2) is defined with 
respect to the various contraction singularities. In s the 
contractions give rise to the usual normal threshold cut 
running along the real s axis from 4 to oo, the physical 
limit being from above. (s=0 is a branch point on the 
second contraction sheet reached by going through the 
normal cut.) The other contraction leads immediately 
to the self-energy function f(W2\\2), which has been 
treated in Appendix A. From /(PF2|X2) one has, for 
W2>9, two independent inverse square root X2 cuts 
along the real axis, one from — oo to 0 and one from 
— oo to (W— l ) 2 , the physical limit being from below 
each of these cuts. The (leading) singularity surface is 

r(^]¥2 ,X2)^^X2(^+X2-l^2--3)+(Pf2---l)2==0. (Bl) 
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Finally we have possible second type singularities on 

2(s,W*)=Zs-(W+iyTs-(W-l)*]=0. (B2) 

The real section of the surface V is shown in Fig. 18, in 
which capital and lower case letters are paired by the 
links of the complex surfaces. 

As well as the physical sheet of / , on which it is 
denoted by fpp, we have the various sheets obtained by 
continuing through one or more of the contraction cuts 
arising from the branch points s=4, X2=0 and 
\2=(W— l )2 . In particular, we will be interested in the 
properties of fqp and fpq, where the second suffix q 
denotes X2 on the second sheet of the X2= (W— l ) 2 cut, 
reached by avoiding the X2=0 cut (recall all these cuts 
are two sheeted). 

For a given s, there are always two X2 points on T, and 
the properties of / on the various sheets are fully deter­
mined once we know for which sheets these X2 points 
are in fact singular. If a given point (s,\2) is singular 
(nonsingular) for fpp, then it is nonsingular (singular) 
for fqp and fpq, etc. This is a straightforward generaliza­
tion of Theorem 3.2 of Ref. 10. 

Consider now an s moving continuously from slightly 
above the normal cut on p to slightly below this cut on 
q, with 4<Re(s)<(W—l)2; then the two X2 points will 
also move continuously, and each will cross the X2 cut 
between 4 and (W— l )2 . The character of each of the 
X2 points remains fixed as long as we do not jump across 
a cut. Let us follow the X2 root of V which has an infini­
tesimal imaginary part of the same sign as that of s; 
then the singularity character of this point for fpp is 
the same as that for fqq, and that for fpq is the same as 
that for fqp. Our restriction to 4<s<(W— l ) 2 is not 

(W+l f E 

(W-l)2 

4 

B ^ \ 0 

A' 

a 

e 

r ̂  
ft > 

b 

4 

c 

(W- l ) 2 (W+l)2-
C 

s ^_ 

\ 
D 

FIG. 18. The real (s,\2) section of the various singularity sur­
faces of the triangle f(s,W2\\2) for real W2>9. The heavy lines 
show singular lower order contractions, and the curve is T(s,W2,\2). 
The various points are at: a, X2 = §(JF 2 -1) ; b, s^%(W2-l); c, 
\* = W+1; e, s = W + l ; c, X2=—PF+1; e, S=-W+1. 

'• "7 

( L+ \ / (W-l)2 R+ (W+l)2 

l-W \ ° L- 4 J l+W \ \ «7~ " 

V_ \ U-
H_ 

FIG. 19. The various complex plane domains of the mapping 
s -* X±

2(s), these being the roots of r(s,PP}\2) = 0 for real W2>9. 

necessary but was used to ensure avoiding the X2=0 cut. 
We now state the singularity characters. Recalling 

that fpp means the function / in the first s and X2 sheets, 
defined with respect to the cuts associated with the 
singularities s=4, X2=0, and X2= (W— l)2 , respectively, 
we find that fpp has complex singularities on the two 
complex conjugate branches of the surface bcBC, but on 
no other surface. The second type singularitys= (W— l ) 2 

is singular on the lower (unphysical) edge of the s cut, 
for \2<W+1; no other singularities exist for fpp. Those 
on the other sheets can easily be derived from this (but 
see below). 

To study F(s,W2) we must follow the motion of the 
X2 singularities of /(^,T^2|X2) as s moves in the complex 
plane, i.e., we need the motion of the roots X±

2(,?) of 
T(s,W2,\2) = 0. Figure 18 really contains complete in­
formation, but it is useful to give a few more details. A 
further treatment of the mapping .?—>X±

2 has been 
given elsewhere.24 

In the equal mass case this mapping is particularly 
simple, since T(s,W2

y\
2) is symmetric under s*=±\2 

(cf. Fig. 18); however the typical features given below 
are general. Both the s and X2 planes can be divided into 
six regions as shown in Fig. 19, called w±, v±, and w±. 

The exact form of the boundary curves is unimportant 
(but see Ref. 24). The upper and lower halves of the 
closed curve are called S±y and of the "bow" curve H±. 
The mapping is double valued, a given s determines two 
points X+

2 and X_2. "Naming" cuts are introduced for 
0 < s < 4 and ( J F - l ) 2 < s < ( I F + l ) 2 , called L and JR, 
respectively, with upper and lower edges L± and R±. 
These naming cuts are simply to guarantee that the 
same point is always given the same name; for example, 
for seRj X+

2, and X_2 are complex conjugate, with large 
imaginary parts. We specify ImX±

2 / Im^^0. Then as s 
crosses from R+ to R- moving infinitesimally, X+2 and 
X_2 seem to jump discontinuously, but in fact X+

2(^—ie) 
is infinitesimally close to XJ(s+ie). 

One finds that the various domains of Fig. 19 map 
into each other as follows: 

X4-2: ^±—>v^ X_2: u±—>20± 

v± —>UT V±~~^ WT (B3) 

w± —-> UT W±—> VT 

24 C. Kacser, Phys. Rev. 132, 2712 (1963). 
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(where X+
2: u+ --» ZL. means s(Eu+} \+

2(s)(EzV-). Further, 
we obtain 

X+2: L±-+H± X_2: £ ± - > f f = F 

H±->HT H±->L 

S^. —> R S± —> *S*=F . 

The mapping of other parts of the real s axis can be read 
off Fig. 18. We have defined X±

2 such that X+2>X_2 for 
real s<0 and 4t<s<(W-l)2, but A+2<A__2 for real 
s> (W+l)2, The curves S and H are in fact defined by 
the conditions (B4). 

I. INTRODUCTION 

UN T I L the rather recent introduction of self-
consistent (bootstrap) methods using the N/D 

formalism,1 it is fair to say that most calculations of 
dynamical effects in strong interactions have been 
single-particle exchange calculations. However, it is 
worth asking how we may go further, and include re-
scattering terms, which arise from the fact that in a 
multiparticle final state more than just one pair of 
particles may interact strongly. A typical reaction is 
shown in Fig. 1, in which a pion is produced in pion-
nucleon scattering. In the final state wirN, there is the 
possibility of three interactions: the two wN ones, and 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Present address: Service de Physique Theorique, C.E.N., 
Saclay, France. 

1 See, for example, F. Zachariasen, Phys. Rev. Letters 7, 112, 
268 (1961); G. F. Chew, Phys. Rev. 129, 2363 (1963); and L. A. P. 
Balazs, ibid. 128, 1939 (1962). 

After these lengthy preliminaries, the properties of 
f(s,W21X2) on the nearest sheets can be listed as follows: 

(a) fpp: X2 singular only if sGu±; A+2 not singu­
lar, X_2 singular 6 % 2 ,j>c\ 

(h)fpq=fqp: for s & ± , w^ both X±
2 singular; 

for sE:U±y X+
2£fl±2 is singular, 

X_ 2 G^ ±
2 not singular. 

We remark tha t for fqp, as s crosses X+ from v+ to u+, 
X_2 crosses the X2 cut from below between 0 and 4 
[cf. (B4)] , having been singular on the p sheet in X2 

for S&+. This singularity passes smoothly on the 
Riemann surface to the q sheet in X2 as s enters u+. 

the 7T7T. Figure 2 shows a rescattering term representing 
the production of a pion and a (3,3) nucleon isobar, the 
isobar then decaying and its decay pion rescattering 
from the pion. We call the amplitude for this process F. 
The problem is to calculate F as a function either of the 
incoming energy W or of the mass of the two pions y/s? 

Graphs similar to Fig. 2 have been discussed quite 
extensively.3 Whereas single-particle exchange graphs 
lead to poles, these give logarithmic singularities—often 
called anomalous thresholds—in W or s, and some effort 
has gone into seeing if these singularities lead to observ-

2 1 am indebted to Dr. S. F. Tuan for stimulating my interest in 
this type of graph. I have been informed by Dr. Tuan that a cal­
culation, similar to that reported here, has been done by Dr. T. T. 
Wu and himself. 

3 For example, bv V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 
1221 (1961) [English transl.: Soviet Phys.—JETP 14, 871 
(1962)], for r decay, and by V. V. Anisovich, A. A. AnsePm, and 
V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 42, 224 (1962) [English 
transl.: Soviet Phys.—JETP 15, 159 (1962)], for pion production 
reactions near threshold. 
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The effects of logarithmic singularities in rescattering processes are investigated. The reaction wN —> TTWN 
is considered, but treated purely as an S-wave, spinless model. A particular triangle graph is analyzed in 
detail; it contains as an intermediate state the (3,3) nucleon isobar i*, which is described as a spinless 
particle of complex mass. The graph is calculated from a dispersion relation as a function of the mass s 
of the two pions in the final state, for low values of the over-all cm. system energy W. The relation is then 
analytically continued in W. For a narrow range in W, an enhancement of the square of the amplitude is 
found near s—4 (the pion mass is unity). The analogous enhancement also appears in the W channel near 
W—I-{-l, for a small range of s only, near s=4 . The prominence of the effect depends on the width of / , 
being closely connected with the nearness to the physical region of one of the two logarithmic singularities 
(anomalous thresholds) of the graph: this distance increases sharply with the isobar width. The positions of 
the singularities are interpreted as the phase-space limits for the simultaneous production of states with 
mass s and / . The conclusion is that such a "double excitation" process leads to an enhancement of the 
triangle amplitude only if, in general, s and / fall in certain narrow ranges. The implications of this result 
for models of the higher resonances in the elastic channel CirN —> TTN) is briefly discussed. 


